Huyssteen, A relational approach of Artificial Intelligence
A third approach is to consider intelligence as acquired, held, and demonstrated only through relationships with other intelligent agents. In “Computing Machinery and Intelligence” (1997), Turing addresses the question of which functions are essential for intelligence with a proposal for what has come to be the generally accepted test for machine intelligence. An human interrogator is connected by terminal to two subjects, one a human and the other a machine. If the interrogator fails as often as he or she succeeds in determining which is the human and which the machine, the machine could be considered as having intelligence.
The Turing Test is not based on the completion of tasks or the solution of problems by the machine, but on the machine’s ability to relate to a human being in conversation. Discourse is unique among human activities in that it subsumes all other activities within itself. Turing predicted that by the year 2000, there would be computers that could fool an interrogator at least thirty percent of the time. This, like most predictions in AI, was overly optimistic.
No computer has yet come close to passing the Turing Test. The Turing Test uses relational discourse to demonstrate intelligence. However, Turing also notes the importance of being in relationship for the acquisition of knowledge or intelligence. He estimates that the programming of the background knowledge needed for a restricted form of the game would take at a minimum three hundred person- years to complete. This is assuming that the appropriate knowledge set could be identified at the outset. Turing suggests that rather than trying to imitate an adult mind, computer scientists should attempt to construct a mind that simulates that of a child. Such a mind, when given an appropriate education, would learn and develop into an adult mind. One AI researcher taking this approach is Rodney Brooks of the Massachusetts Institute of Technology, whose lab has constructed several robots, including Cog and Kismet, that represent a new direction in AI in which embodiedness is crucial to the robot’s design. Their programming is distributed among the various physical parts; each joint has a small processor that controls movement of that joint.
These processors are linked with faster processors that allow for interaction between joints and for movement of the robot as a whole. These robots are designed to learn tasks associated with human infants, such as eye-hand coordination, grasping an object, and face recognition through social interaction with a team of researchers. Although the robots have developed abilities such as tracking moving objects with the eyes or withdrawing an arm when touched, Brooks’s project is too new to be assessed. It may be no more successful than Lenat’s Cyc in producing a machine that could interact with humans on the level of the Turing Test. However Brooks’s work represents a movement toward Turing’s opinion that intelligence is socially acquired and demonstrated.
The Turing Test makes no assumptions as to how the computer arrives at its answers; there need be no similarity in internal functioning between the computer and the human brain. However, an area of AI that shows some promise is that of neural networks, systems of circuitry that reproduce the patterns of neurons found in the brain. Current neural nets are limited, however. The human brain has billions of neurons and researchers have yet to understand both how these neurons are connected and how the various neurotransmitting chemicals in the brain function. Despite these limitations, neural nets have reproduced interesting behaviors in areas such as speech or image recognition, natural-language processing, and learning. Some researchers, including Hans Moravec and Raymond Kurzweil, see neural net research as a way to reverse engineer the brain. They hope that once scientists can design nets with a complexity equal to the human brain, the nets will have the same power as the brain and develop consciousness as an emergent property.
Kurzweil posits that such mechanical brains, when programmed with a given person’s memories and talents, could form a new path to immortality, while Moravec holds out hope that such machines might some day become our evolutionary children, capable of greater abilities than humans currently demonstrate.